AGU Graduate School of Engineering and ScienceProgram

COURSE RECORD

COURSE RECORD	
Code	ECE 505
Name	Antennas
Hour per week	3 (Theory)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Spring
Type	Elective
Location	
Prerequisites	EE 205
Special Conditions	
Coordinator(s)	Dr. Veli Tayfun Kılıç
Webpage	
Content	The course covers the following topics: introduction to antennas and wave
	propagation, electromagnetic fundamentals, wave equations and plane waves,
	electromagnetic power flow and Poynting's vector, Green's function,
	fundamental parameters of antennas, simple antennas such as linear wire,
	dipole and loop antennas, array theory, and various types of other antennas
	used for different applications.
Objectives	- Providing fundamental knowledge and skills for antenna engineering
	- Introducing antenna theory
	- Analyzing design and testing principles of antennas
	- Investigating various types of antennas and their applications
Learning	LO1: To learn basic theory of antennas
Outcomes	LO2: To learn operation principles of antennas
	LO3: To learn how to analyze, design and test a simple antenna
	LO4: To learn antenna parameters
	LO5: To understand array antenna theory
Requirements	Basic knowledge about fundamentals of electromagnetics
Reading List	- Antenna Theory, Analysis and Design, 3rd Edition, Constantine A. Balanis, John
	Wiley & Sons, Inc., New York, 2005
	- Lecture Notes
Ethical Rules and	
Course Policy	

LEARNING ACTIVITIES Please, use this one as a reference for your course

Activities	Number	Weight (%)
Lecture	14	60%
Group Works	1	40%
Presentations	0	0%
Site Visits	0	0%
	Total	100 %

ASSESSMENT

Evaluation Criteria	Weight (%)
Midterm Exam/Submission	20%
Group Project Assignments & Presentations	40%
Attendance/Participation	05%
Final Exam/Submission	35%
Total	100%

This is a tentative grading policy. It may change as needed.

AGU Graduate School of Engineering and Science

COURSE LOAD *Please, use this one as a reference for your course*

Activity	Duration	Quantity	Work Load	
	(hour)		(hour)	
In class activities	3	14	42	
Lab	0	0	0	
Group work	2	14	28	
Research (web, library)	0	0	0	
Required Readings	3	12	36	
Pre-work for Presentation	2	1	2	
Lab reports	0	0	0	
		General Sum	108	

ECTS: 10 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12	P013	P014
L01	5	3	5	1	1	1	1	0	1	1	1	0	0	0
LO2	4	4	4	4	1	0	0	0	3	3	3	4	2	2
LO3	0	0	0	5	5	0	1	0	5	5	2	1	0	0
L04	0	0	0	4	4	5	5	0	5	5	5	5	0	0
LO5	0	0	0	0	0	0	0	0	0	0	0	0	5	5

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	TX and RX Antennas, EM Fundamentals, Maxwell Equations and Boundary	L01, L02
	Conditions	<u>_</u>
	Lab/Activity:	
2	Wave Equations and Solutions, Plane Waves	LO1, LO2
	Lab/Activity:	
3	Flow of EM Power and Poynting's Vector, Green's Function	LO1, LO2
	Activity:	
4	Hertzian Dipole, Radiation Field Regions	L02, L03, L04
	Activity:	
5	Radiation Patterns, Radiation from Line Currents	L03, L04
	Activity:	
6	EM Field Approximations in Far-Field Region, Fundamental Definitions of	L04
	Antennas (Part I)	_
	Activity:	
7	Fundamental Definitions of Antennas (Part II)	L04
	Activity:	
8	Midterm Exam	_
	Activity:	
9	Circuit Models, Antenna Input Impedance and Matching (Part I)	LO2, LO3, LO4
	Activity:	_
10	Circuit Models, Antenna Input Impedance and Matching (Part II),	LO2, LO3, LO4
	Reciprocity	_
	Activity:	_
11	Polarization, Polarization Loss Factor and Efficiency	LO2, LO4
	Activity:	_
12	The Radio Communication Link, Radar Range Equation, Radar Cross	LO2, LO4
	Section	_
	Activity:	
13	Array Theory (Part I) (Uniform One-Dimensional Arrays)	L05
	Activity:	_
14	Array Theory (Part II) (Nonuniform Arrays, Uniform Two-Dimensional	L05
	Planar Arrays)	

AGU Graduate School of Engineering and
Science
Program

Activity:

Prepared by Veli Tayfun KILIÇ Date: November 2018